
IMAGE CLASSIFICATION: FACE MASK DETECTION

Michael Davies
School of Data Science
University of Virginia

Charlottesville, VA 22903
mld9s@virginia.edu

Akeem Wells
School of Data Science
University of Virginia

Charlottesville, VA 22903
ajw3rg@virginia.edu

Preston Parrott
School of Data Science
University of Virginia

Charlottesville, VA 22903
pp3bd@virginia.edu

December 5, 2021

ABSTRACT

We present here two broad deep learning approaches applied to face mask data: Classification (mask,
no-mask) and Object Detection (where is a potential face mask). First, we obtained data from
Kaggle.com to implement two classification models: ResNet50 and VGG16. Both models perform
exceedingly well. Second, we scrubbed images from google images and added a few images from
the original data set in order to have images with greater diversity. After annotating the images, we
implemented a YOLOV3 (You Only Look Once) model. Ultimately, the YOLO model also performed
exceedingly well.

1 Motivation

We implemented two broad approaches to face mask data: Classification and Object Detection. We largely treat this as
separate approaches because image classification very likely will not perform well on images that contain both masked
and unmasked people. Therefore, our data for the classification models are divided into images of mask and no-mask.
Conversely, to implement object detection, we scrubbed images from google and added a few images from the original
data set in order to have images with multiple people (some with masks and some without.) In both cases, we leveraged
pretrained models - imagenet and coco respectively.

2 Data

2.1 Data for Classification

We are using the "Face Mask Detection using CNN" dataset from Kaggle. The dataset contains 5000 images, and each
are labelled for binary classification: with mask and without mask. In the ResNet50, after scaling, we augmented the
data with brightness, contrast, and hue.

2.2 Data for Object Detection

The initial data selection was annotated from a small subset from the data at Kaggle.com using https://roboflow.ai/. This
data proved to need updating due to various reasons including lack of diversity between faces, lack of diversity between
masks, image resolution, etc. Additionally, images from the initial data set only contained images with one mask to be
annotated. We scrubbed several additional images from Google, which had better resolution, multiple faces (some with
masks and some without), and greater age and racial diversity. We then annotated them with bounding boxes around the
face masks using roboflow.

A PREPRINT - DECEMBER 5, 2021

3 Methods

At this stage, we have implemented the following methods:

• ResNet50 (classification)

• VGG16 (classification)

• YOLO (object detection)

3.1 Classification Models

3.1.1 Resnet50

We first implemented a ResNet50 for image classification. This algorithm is well known for relatively strong performance
and fast runtime. The key distinction of ResNets is its application of residual learning via skip connections, which
effectively are shortcuts to jump over some layers. This avoids the problem of vanishing gradients and ensures the
signal can easily make its way across the whole network.

In terms of model design, the ResNet pre-trained weights are from the imagenet. We implemented a standard optimizer
(Adam), drop out (0.5), and a final dense layer of 2048. With the layers frozen, we set epochs = 5. Then we unfroze
addition layers and set our epochs = 15.

2

A PREPRINT - DECEMBER 5, 2021

Results

The final performance results were: Accuracy: 0.9997, Val Accuracy: 0.9987, Loss: 0.0008 and Val Loss: 0.0127.
Given the results (an validation accuracy over 0.99), this appears to be an easy classification problem. Of course,
ResNets are famously good performers. In addition, the image data was not likely very challenging. The images were
almost exclusively close up images of a single face mask, and there was very little diversity in terms of race and age.

3.1.2 VGG16

Following the implementation of the Resnet50, a VGG16 was trained. The choice of this algorithm was due to its
contrast in technique and depth. The model has 138M parameters with a notably simplistic and interpretable architecture
given its use of 3×3 filters stacked on top of each other in increasing depth. Reducing volume size is handled by max
pooling. Two fully-connected layers, each with 4,096 nodes are then followed by a softmax classifier. However, due
to its depth and the number of fully-connected nodes, the VGG16 model size is over 533MB which slows training.
Additionally,the network architecture weights are large which can be concerning as it relates to bandwidth.

3

A PREPRINT - DECEMBER 5, 2021

Results

Optimal performance was achieved after 9 epochs at 200 steps per epoch. The model performed well on both training
and validation data as indicated by performance results: Accuracy: 0.973, Val Accuracy: 0.985, Loss: 0.13 and Val
Loss: 0.91.

4

A PREPRINT - DECEMBER 5, 2021

3.2 Object Detection

3.2.1 YOLOV3

As discussed above, this data appears easy to classify. Therefore, we extended this project with an object detection
model. This also required additional changes to our working data set.

YOLO (You Only Look Once) is a Convolutional Neural Network (CNN) that “applies a single neural network to the
full image, and then divides the image into regions and predicts bounding boxes and probabilities for each region.”

The current data set contains 232 images with 459 total annotations of 259 people without masks and 250 people with
masks

From this we applied several augments including changes in hue, contrast, brightness, exposure, and rotation. This
yields us a training set of 696 images.

In order to achieve this, we implemented the YOLOV3 model using TensorFlow 1.0 (Keras 2.2.4). We’ve modified a
version of YOLOV3 provided by (https://github.com/roboflow-ai/keras-yolo3). We pretrain our model (62,000,000
params) using weights from (https://pjreddie.com/media/files/yolov3.weights) on 557 Training Samples and 139
Validation Samples.

Initial Results

From our YOLOV3 model, we were able to take an test image

and produce bounding boxes with probability of the correct class.

5

A PREPRINT - DECEMBER 5, 2021

YOLO uses sum-squared error between the predictions and the class label to calculate loss. The resulting losses for our
YOLOV3 model were as follows:

4 Conclusion

Given the strong performance in the classification models (ResNet50, and VGG16), this appears to be an easy
classification problem. This is unsurprising. Of course, this problem is ideally suited for deep learning algorithms such
as ResNets and VGGs. In addition, the image data was not likely very challenging. The images were almost exclusively
close up images of a single face mask, and there was very little diversity in terms of race and age.

Within the performance of the YOLOV3 model, we can see accurate results in detecting people wearing a mask or not.
The model also is correct at not bounding standalone masks presented in an image. Due to long training times and
limited resources, the model sacrifices accuracy for reduced runtimes. Therefore, the loss graph above appears to not
show loss convergence.

6

A PREPRINT - DECEMBER 5, 2021

5 Bibliography

https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ch14.
html#idm45022138648968

https://github.com/roboflow-ai/keras-yolo3

https://viso.ai/deep-learning/yolov3-overview/

https://colab.research.google.com/drive/1ByRi9d6_Yzu0nrEKArmLMLuMaZjYfygO#scrollTo=
WgHANbxqWJPa

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088

6 Member Contribution

While each member took lead on one particular model, we consulted as a group during the process.

• ResNet50 - Michael Davies
• VGG16 - Preston Parrott
• YOLOV3 - Akeem Wells
• Image scrubbing (additional images for object detection) - all
• Image annotations (labeling bounding boxes) - all
• Data hosting (github) - all but hosted Akeem’s github
• Written product - all

7

https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ch14.html#idm45022138648968
https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ch14.html#idm45022138648968
https://github.com/roboflow-ai/keras-yolo3
https://viso.ai/deep-learning/yolov3-overview/
https://colab.research.google.com/drive/1ByRi9d6_Yzu0nrEKArmLMLuMaZjYfygO#scrollTo=WgHANbxqWJPa
https://colab.research.google.com/drive/1ByRi9d6_Yzu0nrEKArmLMLuMaZjYfygO#scrollTo=WgHANbxqWJPa
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088

	Motivation
	Data
	Data for Classification
	Data for Object Detection

	Methods
	Classification Models
	Resnet50
	VGG16

	Object Detection
	YOLOV3

	Conclusion
	Bibliography
	Member Contribution

